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Abstract-A finite difference calculation of forced convective heat transfer from an oscillating cylinder is 
carried out using vorticity, stream function and temperature as the dependent variables. The non- 
dimensionalized vorticity transport and energy equations in a non-inertial frame attached to the cylinder, 
are solved in a rectangular grid, based on a log-polar coordinate system. The effects of cylinder oscillation 
in the in-line and transverse directions, on the time dependent average Nusseh number and the Nusselt 
number distribution on the cylinder surface are investigated for a Reynolds number of 200. Some of the 
numerical predictions are compared with experimental data available in the literature. In the case of the 
stationary cylinder, the average Nusselt number was found to oscillate at twice the natural shedding 
frequency. The heat transfer rate from the oscillating cylinder increases with the increasing velocity 
amplitude. In the case of transverse oscillation, the location of maximum local Nusselt number was found 
to oscillate between the upper and lower surface of the cylinder. Contour maps of vorticity, stream line 

and isotherms are presented and the physical aspects of the flow field are discussed. 

INTRODUCTION 

THE FORCED convective heat transfer from a stationary 
cylinder is a fundamental engineering problem with 
applications ranging from heat exchangers to hot 
wire anemometers. Experimental observations and 
numerical predictions have shown that the alternating 
vortex street in the wake of a cylindrical body induces 
oscillating lift and drag forces on the body. The 
unsteady behaviour of the flow close to the surface 
strongly affects the heat transfer from the cylinder. 
The oscillating lift and drag forces may cause the 
cylindrical body to vibrate both in the in-line and 
transverse directions. In order to design the heating 
elements to withstand the vibration or to improve the 
heat transfer rate, it is necessary to investigate the 
effects of oscillation of the cylinder in the in-line and 
transverse directions. 

In the past two decades, several numerical inves- 
tigations of the unsteady heat transfer from a station- 
ary circular cylinder have been made. Most of these 
were carried out for Reynolds number less than 500. 
Recently, Chun and Boehm [l] carried out a finite 
difference calculation of forced convective heat trans- 
fer at various Reynolds numbers as high as 3480 with- 
out initiating an alternating vortex street. Many exper- 
imental correlations exist relating the Reynolds 

t To whom correspondence should be addressed. 

number, Prandtl number and the mean Nusselt num- 
ber for the case of forced convective heat transfer from 
a stationary cylinder. 

Many experimental investigations have shown that 
oscillation of the cylinder in a still fluid medium results 
in an increased heat transfer rate [2-51. In the case of 
an oscillating cylinder in a cross flow, fewer exper- 
imental studies have been reported in the literature. 
Hegge Zijnen [6] observed a decrease in the heat trans- 
fer rate at a Reynolds number of 5 with the cylinder 
undergoing oscillation in the direction in-line to that 
of the mean flow. Leung et al. [7] observed an 
enhanced heat transfer rate for Reynolds numbers less 
than about 15 000 with in-line oscillation. At Reynolds 
numbers 1400,210O and 3500, Takahashi and Endoh 
[8] experimentally investigated the effects of in-line 
oscillation of the cylinder on the heat transfer rate at 
various vibrational Reynolds numbers and concluded 
that heat transfer rate increased during the in-line oscil- 
lation above certain velocity amplitude. Sreenivasan 
and Ramachandran [9] experimentally studied the 
effects of the oscillation of a cylinder in the direction 
transverse to that of the air stream and no appreciable 
change in the heat transfer coefficient was observed 
with a maximum velocity amplitude of 0.2. At a Reyn- 
olds number of 3500, Saxena and Laird [lo] observed 
that some local heat transfer coefficients were up to 
60% larger with a vertical cylinder undergoing forced 
oscillations in the direction transverse to the mean 
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NOMENCLATURE 

(I transformation parameter I’,. I’,, nondimensional relative velocity 
A:. A: velocity amplitude in the in-line and component in the r and (9 direction. 

transverse direction respectively respectively 
[ms-‘1 (.% v) Cartesian coordinates in the frame 

A,,A, nondimensional velocity amplitude of reference attached to the 
in the in-line and transverse cylinder 
direction respectively (X’, .I,) Cartesian coordinates in the inertial 

R radius of the cylinder [m] frame of reference 

F,.F, nondimensional frequency Xi. I.’ I position of the cylinder in the in- 
parameter in the in-line and transverse line and transverse direction 
direction, respectively respectively [ml. 

Nu(0, z) local Nusselt number (as defined in 

equation (14)) 
Nu,,,(z) average Nusselt number (as defined Greek symbols 

in equation (15)) r thermal diffusivity [m’ s ‘1 
Nun, mean Nusselt number (as defined E incident angle of the 

in equation (16)) nondimensional free stream 
Pr Prandtl number velocity relative to the frame 

(r3 0) radial and tangential coordinates in of reference attached to the 
a frame of reference attached to the cylinder 
cylinder \’ kinematic viscosity [m’ s- ‘1 

Re Reynolds number (s’? ‘1) nondimensional log-polar 
T temperature YC] coordinates 

T, cylinder surface temperature [“Cl t nondimensional time 

TX ambient temperature [“Cl %),,C nondimensional time in a natural 
t time [s] vortex shedding cycle or an oscillation 

t,. I, period of oscillation in the in-line cycle of the cylinder 
and transverse direction respectively 71, nondimensional natural vortex 

IsI shedding period 
I/. V nondimensional convective velocity r* ratio. T,~~,~~:T, 

component in the < and q direction, @ nondimensional temperature 

respectively $ stream function relative to the 

U’ free stream velocity [m s- ‘1 frame of reference attached to 

u* nondimensional free stream the cylinder [m’ s ‘1 

velocity relative to the frame of \y nondimensional stream function 

reference attached to the cylinder relative to the frame of reference 

U,, 1’” relative velocity component in the r attached to the cylinder 

and .G direction respectively (/I vorticity [s- ‘1 

[ms-‘1 n nondimensional vorticity. 

water flow. Other investigators such as KeLios and 
Prasanna [ 1 l] reported a 20% increase in the average 
heat transfer coefficient with a transversely oscillating 
cylinder. In the literature, no conclusive experimental 
results have been reported regarding the effects that 
an oscillating cylinder has on the forced convective 
heat transfer. 

Flow past an oscillating cylinder either in the in- 
line or transverse direction has been experimentally 
and numerically studied by several researchers for 
many years. Several finite difference or finite volume 
simulations [12-151 have been carried out using the 
concept of a non-inertial frame of reference. All of 
the simulations were carried out using the primitive 
variables except for Lecointe [15]. To the authors’ 

knowledge. no numerical simulation has been 
attempted to study the effects of oscillation of the 
cylinder on forced convective heat transfer. 

In the case of flow past a stationary cylinder, vor- 
tices are shed at a constant nondimensional natural 
shedding frequency (Strouhal number), for a flow 
with a particular Reynolds number. Within a range 
of forced frequency, vortex shedding is controlled by 
the oscillation of the cylinder and a considerable 
increase in the lift and drag force is observed. This is 
referred to as the ‘lock-in’, ‘wake capture’ or ‘syn- 
chronization’ phenomenon. During transverse oscil- 
lation, lock-in occurs when the forced frequency 
approaches the natural shedding frequency causing a 
considerable increase in the drag force with the vor- 



Forced convective heat transfer from an oscillating cylinder 1621 

tices being shed at the same frequency as that of the 
cylinder. The lock-in phenomenon occurs with an in- 
line oscillation, when the frequency of the cylinder 
approaches twice the natural shedding frequency. The 
vibration of the cylinder in the lock-in range of fre- 
quencies, causes the vortex shedding to occur at half 
the cylinder frequency and produces a significant 
increase in the lift force. The influence of the lock-in 
phenomenon on the heat transfer is rarely discussed 
in the literature. 

The main objective of this paper is to study the 
effects that oscillation of the cylinder in the in-line and 
transverse directions has on the time history of the 
average Nusselt number over the cylinder surface. It 
is also of importance to bring out the influence of 
cylinder oscillation on the local Nusselt number dis- 
tribution on the surface of the cylinder. The effect that 
the lock-in phenomenon has on the heat transfer rate 
is also discussed. The influence of alternating vortex 
street on the isotherm contours and the time history 
of the Nusselt number is also examined. 

In this study, the non-dimensionalized vorticity 
transport and energy equations in a non-inertial ref- 
erence frame (attached to the cylinder) are solved 
on a rectangular grid based on log-polar coordinates 
(5,~). Finite difference calculations were made at a 
Reynolds number of 200. Laminar flow assumption is 
made and the Prandtl number is assumed to be 1 .O. 

into the continuity and momentum equations, they 
can be simplified and reduced to two equations: the 
vorticity transport equations. In the case of an oscil- 
lating cylinder, the vorticity transport equations and 
the energy equation in a non-inertial reference frame 
retain the same form as in the inertial frame of ref- 
erence and are given by 

where 

The relative velocity components in the radial and 
tangential directions are defined as follows 

1 alI/ alb 
v,=-L -T 

r ae' v”= -ar’ 
In order to achieve a more accurate numerical solu- 
tion, it is essential to have a finer grid near the cylinder. 
This can be accomplished by the use of the log-polar 
co-ordinate transformation given by : 

FORMULATION r/R = eat and 0 = aq 

The isothermal cylinder is assumed to be oscillating where ‘a’ the transformation parameter is set equal to 

sinusoidally either in the in-line or transverse direction n in this study. 

to that of the mean flow (Fig. 1). In order to achieve This log-polar co-ordinate transformation allows 

a fixed grid with respect to the cylinder, it is necessary us to have a uniform grid in a transformed rectangular 

to use a non-inertial reference frame attached to the domain. The nondimensional variables are defined as: 

cylinder (x, y or r, 0). The governing equations in the T-T 
case of a two dimensional flow problem are the con- 
tinuity, energy and two momentum component equa- 

+ *=A, a=$, @=A 
T,-T,’ 

tions. By introducing the stream function and vorticity 2RU’ 
V8=-$, Re=- ) Pr=Jf 

V LY’ 

The nondimensionalized vorticity transport and 
energy equations are 

g(l)Q = -V2Y (6) 

FIG. 1. Coordinate systems. 

where 

and 

g(t) = a2 eZaC 
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^Y 

V’ _ c’- / 2’ 
(?tz a+ 

The nondimensional relative velocity components are 
given by 

C’ V 
V, =-- 

:(.4(i)) ’ 
Vf, = ___ 

~i(s(s)) 
(8) 

where 

The boundary conditions on the cylinder surface are 

given by 

The time dependent far field boundary condition for 
the stream function relative to the cylinder is obtained 

by using the potential flow solution. 

Y = 2[(1 -A, sin (nzF,))‘+(A, sin (rrrFV))‘]’ ’ 

x sinh (atr,) sin (uq -6) 

where 

F: = tan’ 
-A,. sin (rczF,.) 

1 -A, sin (nzF,) 1 
The nondimensionalized temperature and vorticity in 
the far field are assumed to be zero. Based on the 
information available in the literature, the far field 
boundary may be located at a distance of 80 times the 
cylinder radius. 

NUMERICAL PROCEDURE 

The vorticity transport and the energy equations are 
solved numerically using the ADI scheme. Borthwick 
[Ih] showed that the ADI scheme is more reliable 
and accurate than the upwind directional difference 
explicit scheme. The time derivative is approximated 
using forward difference and the diffusion and con- 
vective terms are calculated using the central differ- 
ence scheme. The vorticity transport equation in a two 
step finite difference form is given as follows. 

%?(5 1 i-J+,,2 
(~w+‘~),+,,,-(v’~n)l+“~),~~,., 

AZ ‘J 2Avl 

2 (Q+,, 

- ( 

-2n,,+n,+J+ ’ z 
Re A$ 

_ 2Y(5,) @ _ (c/W,, I ~ (uQ):i,~- I 
AZ I.’ 2AC 

- 2Q,, +Q,,- I)” 

A<> 
(9) 

2 a.,+, -3 - 2R,., + R,., , )” + i ‘j ____~~~~.. 
RC A<? 1 / 

The superscript II represents the /? th time step and the 
subscripts i,,j represent the (i.j) mesh point in the 
(11.5) coordinates, respectively. Similarly, the energy 
equation can be written in the finite difference form 
by replacing the dependent variable with @ and the 
Reynolds number with the product of Reynolds num- 
ber and Prandtl number. 

The velocities in the convective terms are calculated 
using the fourth order accurate Hermitian relations 
and are given by 

c:,. I ,+4u,.,+u,,,., =~(~.+,~-..~,.,) (11) 

-3 
v ,.,- I +4 v,., + v,., + / = $Y’_,’ I --Y!,,_,). (12) 

The Hermitian relations have been used successfully 
by Lot and Bouard [ 171 up to a Reynolds number of 
9500. The vorticity boundary condition on the cyl- 
inder can be approximated numerically in different 
ways. In this study. a second order accurate cubic 
polynomial approximation is used and is given by 

The Poisson equation is solved iteratively using the 
SOR scheme. An optimum relaxation coefficient [ 181 
is used to enhance the convergence rate. The numeri- 
cal solution obtained is first order accurate in time 
and second order accurate in space. The grid depen- 
dency tests were carried out using 121 x 85, 151 x 106 
and 181 x 127 grid sizes for the case of stationary 
cylinder. The 151 x 106 and 181 x 127 grids gave simi- 
lar results. In this study, the nondimensional time step 
and the grid size are taken to be 0.01 and 151 x 106. 
respectively. The far field boundary was located at 
distance of 81.3R (l,,, = 1.4). In the initial stage of 

simulation, the cylinder was rotated counterclockwise 
and then clockwise for a small duration of time with 
a constant angular velocity. This numerical triggering 
procedure is required to initiate the alternating vortex 
street [ 191. 

RESULTS AND DISCUSSIONS 

The heat transfer between the cylinder and the sur- 
rounding stream of fluid is calculated in the form of a 
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nondimensional near, the Nusselt number. The 
local Nusselt number is calculated using the following 
equation 

(14) 

The average Nusselt number represents the net heat 
transfer from the cylinder surface to the fluid and is 
expressed as follows 

In order to compare with the experimental results, it 
is essential to calculate the mean Nusselt number over 
a period of time. In this study, mean Nusselt number 
was calculated between z = 40 and 100 using the fol- 
lowing expression. 

The numerical predictions are compared with the fol- 
lowing experimental correlation deducd from refs. [6, 

201 

Ah,,, = 0.42$0.57(1-_&+fA&,/(Re). (17) 

Stationary cylinder in a cross J%W 
Figure 2 shows the time dependent average Nusselt 

number (Nu&z)). After a stable alternating vortex 
street is generated in the wake (z % 20.0), the N&&z) 
was found to be oscillating at twice the natural shed- 
ding frequency about a mean value of 8.47. This may 
be explained by the shedding of two vortices (one 
from the upper and the other from the lower half of 
the cylinder) in a complete vortex shedding cycle. The 

12 

11 

3 10 
z 

9 

9 

0 20 40 60 90 100 

+ 

FIG. 2. Time dependent average Nusselt number (stationary 
cylinder). 

Table I. Mean Nusselt number at different velocity ampii- 
tudes 

- 
Computed Equation (17) 

AX A, &u NY, 

0 0 8.470 8.481 
0.25 8.640 8.450 
OS : 8.974 8.355 
0 0.25 8.588 8.544 
0 0.5 8.861 8.733 

predicted mean Nusselt number (TabIe 1) is approxi- 
mately equal to the value given by the correlation 
of Kramer [20]. The amplitude of oscillation of the 
NM,,(Z) was very small (z 0.045) when compared to 
the mean value. The nondimensional natural shed- 
ding frequency was calculated to be equal to 0.2 which 
agrees exactly with the computed value by Lecointe 
and Piquet [IS]. The correspon~ng non-~mensional 
natural vortex shedding period (r,) is 10. Figure 3 
shows the local Nusselt number distribution on the 
cylinder at different z* in a complete vortex shedding 
cycle. It can be observed that the local Nusselt number 
distribution does vary only on the down stream side 
of the cylinder where the vortices are shed alternately. 
The maximum heat transfer rate occurs at the 
upstream stagnation point and the minimum heat 
transfer occurs between the separation points and 
downstream stagnation point (0 x: 53 and 308”). Fig- 
ures 4(a), (b) and (c) show the contour maps of 
streamline, vorticity and isotherms, respectively, at 
the same instant of time. The stream line contour map 
clearly depicts the alternating vortex street in the wake 
and a vortex being shed from the top half of the 
cylinder. As both vorticity and thermal energy are 
being transported by the flow in the wake, the contour 
maps of vorticity and isotherms have some similar 

14 
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0 45 90 135 180 22.5 270 315 980 

e fdes.) 
FIG. 3. Local Nusselt number distribution on the cylinder 
(stationary cylinder). A. T* = 0.0, B. r* = 0.25, C. z* = 0.5, 

D. r* = 0.75, E. z* = 1.0. 
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(a> 

(b) 

I . 

Cc) 
FIG. 4. Contour maps at T = 50.0 (stationary cylinder). 

(a) Streamline; (b) vorticity ; (c) isotherms. 

features. All the isothermal contour maps presented 
in this paper are with a contour interval of 0.05 and 
with the minimum and maximum levels of contour as 
0.05 and 1.0, respectively. 

In-line oscillation 
The cylinder was forced to oscillate with a frequency 

parameter (F?) of 0.2 and with velocity amplitudes 
(A,) of 0.25 and 0.5. The equivalent position ampli- 
tudes are 0.4R and 0.8R, respectively. The oscillation 

of the cylinder was started after a non-dimensional 
time delay of 40.0. The selected frequency parameter 
is one-half of the non-dimensional lock-in frequency. 
Figure 5 shows the time histories of Nu,,,,(t) with 
A, = 0. 0.25 and 0.5, respectively. The time variation 
of the position of the cylinder (s/R) and relative 
free stream velocity (U* = 1 -A, sin (xF,r)) are also 
shown in the same figure for reference. The amplitude 

of Nu,~,,(T) and the mean Nusselt number (NM,,,) 
increase with the increasing A, (Table 1). According 
to equation (17). NM, should decrease with the 
increasing velocity amplitude. Hegge Zijnen [6] vcri- 
fied the equation (17) only up to a Reynolds number 
of 5. The computed trend of increasing heat transfer 
rate with the velocity amplitude agrees with the exper- 
imental results given by Takahashi and Endoh [X] at 
higher Reynolds numbers. The average Nusselt num- 
bcr reaches a maximum and a minimum value in a 
full cycle of forced oscillation. These maximum and 
minimum values, however. change from cycle to cycle. 
The maximum values of Nu,,,(T) in all oscillation 
cycles are attained when the cylinder moves in the 
opposite direction lo that of the flow and near the Lero 
position of the cylinder (-Y/R = 0.0). The minimum 
values are reached with the cylinder moving in the 
same direction as that of the How and near the 
maximum x:/R. 

Figures 6(a) and (b) show the local Nusselt number 
distribution on the cylinder at different times in a full 
cycle of oscillation (from z = 50.0 to 60.0) at velocity 
amplitudes 0.25 and 0.5, respectively. The location 
and magnitudes of the maximum heat transfer rate at 
different instants of time during one complete cycle of 
oscillation are listed in Table 2. On the upstream side 
of the cylinder, the Nusselt number distribution 
almost repeats itself after a complete cycle of oscil- 
lation. With the velocity amplitude of 0.5. the 
maximum heat transfer rate occurs near the down- 
stream stagnation point when the cylinder is moving 
in the same direction as that of the flow. This may bc 
due to the cylinder traversing with significant velocit! 
through the wake which may cause high temperature 
gradients near the down stream stagnation point. 
Figures 7(a)-I show the contour rnaps of the iso- 
therms at different stages in a full cycle of oscillation 
(,4 I = 0.5). Approximately symmetric isothermal con- 
tours exist near the cylinder. The cylinder motion in 
the in-line direction produces symmetrical per- 
turbations which. under certain conditions. dominate 
over the naturally occurring antisymmetric mode of 
vortex shedding [21]. A high concentration of i5o- 
thermal contours can be observed near the upstream 
and downstream stagnation points. 

Trmscerse oscillution 
The amplitude and frequency parameters of oscil- 

lation were kept the same as in the case of the in-line 
oscillation (A,. = 0.25, A, = 0.5 and F, = 0.2). Figure 
8 shows the time dependent average Nusselt number 
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FIG. 5. Time dependent average Nusselt number (in-line oscillation) 

22 IOAI 
I I*BI t 

-0 45 90 135 180 225 270 315 360 

W;J.’ 

FIG. 6. Local Nusselt number distribution on the cylinder. A. z* = 0.0, B. r* = 0.25, C. T* = 0.5, 
D. T* = 0.75, E. T* = 1.0. 
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Table 2. Location and magnitude of maximum Nu(H. z) in a cycle of oscillation 

A, = 0.25 A, = 0.5 A, = 0.25 A -0.5 

Max. Angle Max. Angle Max. Angle MIX. Angle 
5* Nu(O. T) (deg.) .Riu(O. 5) (deg.) Nu(H. T) (deg.) Yu(iI. T) (deg.) 

0.00 16.26 180 16.55 I x0 15.90 182.4 15.91 184.8 
0.25 13.59 180 21.83 4.8 16.16 165.6 16.92 153.0 
0.50 15.16 180 13.98 0, 180 15.90 Ill.6 15.97 175.2 
0.75 17.87 I80 19.53 I no 16.18 196.8 16.94 306.4 
I .oo 16.28 I80 16.33 I x0 15.91 182.4 15.96 1x4.x 

(a> 

Cd) 

(e> 
FIG. 7. Isothermal contours at various cycles of oscillation (A, = 0.5). (a) Beginning of cycle; (b) after l/4 

cycle : (c) after I /2 cycle ; (d) after 3/4 cycle ; (e) after one cycle. 



Forced convective heat transfer from an oscillating cylinder 1627 

9 

8.9 

8.8 

8.7 

8.8 

8.5 

8.4 
40 50 60 70 80 90 100 

FIG. 8. Time dependent average Nusselt number (transverse oscillation). 

at different velocity amplitudes in the transverse direc- 
tion. The time dependent position of the cylinder in 
the transverse direction (y:/R), magnitude and inci- 
dent angle of the relative free stream velocity (( U* ) = 
4 { 1 + AZ sin’ (xF,r)} and E) are also plotted above in 
the same figure for easy reference. Unlike in the case 
of in-line oscillation, Nu,,,(z) oscillates at twice the 
frequency of oscillation of the cylinder. It is to be 
noticed that the magnitude of the relative free stream 
velocity also oscillates at 2F, which directly influences 
the time variation of the average Nusselt number. The 
chosen frequency parameter lies within the lock-in 
frequency range. During lock-in, it is known that vor- 
tex shedding is being controlled by the cylinder oscil- 
lation. This may also influence the average Nusselt 
number variation with time. The mean Nusselt num- 
ber increases with increasing velocity amplitude 
(Table 1). The computed values of Nu, agree with the 
values calculated from equation (17) with a maximum 
difference of about 1.4%. 

Figure 8 shows that amplitude of oscillation of 
Nu,,(z) first decreases and then increases with an 
increase in the velocity amplitude (A,) in the trans- 
verse direction. This may be due to the fact that the 
N+(z) for the case of the forced oscillation of the 

cylinder (A, = 0.5) is approximately 180” out of phase 
with the naturally occurring Nu,,,(z) for the station- 
ary cylinder. As A, increases, the effect of forced oscil- 
lation on the amplitude of Nu,_(z) becomes more 
predominant than that of the natural oscillation. 

In any cycle of oscillation, both maximum values 
of Nu,,,(z) occur (Fig. 8) near the zero position of the 
cylinder (y:/R x 0) during the upward and downward 
motion of the cylinder. The minimum values of 
Nu,,~(T) are predicted near the minimum y:/R and 
the maximum yL/R. After the initial transient stage, 
approximately the same maximum and minimum 
values of Nu,,~(z) occur at the same positions in every 
cycle. 

The local heat transfer rate from the cylinder sur- 
face at velocity amplitudes 0.25 and 0.5 are rep- 
resented in Figs. 9(a) and (b), respectively. The 
location and magnitude of maximum Nu(B,z) are 
given in Table 2 at different times in a single cycle of 
oscillation of the cylinder (from T = 50.0 to 60.0). It 
can be observed that the location of the maximum 
heat transfer rate oscillates at the same frequency as 
that of the cylinder (PY). The location of the maximum 
local Nusselt number depends on the direction of the 
relative velocity of the flow with respect to the cylin- 
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FK. 9. Local Nusselt number distribution on the cylinder. A. r* = 0.0. B. T* = 0.25, C. T* = 0.5. 
D. T* = 0.75. E. T* = 1 .O. 

der. This implies that the phase of the relative free 
stream velocity which is also oscillating at a non- 
dimensional frequency F,, (Fig. S), influences directly 
the location of the maximum local Nusselt number on 
the cylinder. During the upward or downward motion 
of the cylinder with maximum veiocity, the maximum 
heat transfer occurs from a location on the upper 
surface or the lower surface respectively. Figures 
10(a)-(e) show the isothermal contour maps at differ- 
ent stages in single cycle of oscillation. A significant 
amount of difference in the layout of isothermal 
contours can be observed when compared with the 
contour maps for in-line oscillation (Figs. 7(a)- 
(e)). A high concentration of isothermal contours are 
found to exist only near the upstream stagnation 
point. 

CONCLUSIONS 

be varying with a small amplitude at twice the natural 
shedding frequency. In comparison with the forced 
convective heat transfer from a stationary cylinder, an 
increased mean Nusselt number was predicted with 
the oscillation in both the in-line and the transverse 
directions. In the case of transverse oscillation, the 
average Nusselt number was found to be oscillating 
at twice the forced frequency of oscillation. The pre- 
dicted results for the stationary cylinder and the trans- 
versely oscillating cylinder, agree satisfactorily with 
the values obtained from equation (17). An increasing 
trend of the mean Nusselt number with in-line oscil- 
lation is predicted as opposed to the decreasing trend 
given by the correlation. The location of maximum 
local Nusselt number depends on the direction and 
velocity amplitude of oscillation of the cylinder. The 
amplitude of MaayE variation is strongly influenced 
by the oscillating velocity amplitude. 

A very general formulation for forced convective 
heat transfer from an oscillating cylinder using vor- Acknowledgemenr-This research work was financially 

ticity and stream function as dependent variables is 
supported through a University of Windsor Postgraduate 

presented. fn the case of the stationary cylinder in a 
Scholarship and grants from the Natural Sciences and Engin- 
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cross flow, the average Nusselt number was found to 2190 and A-1403). 
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(bf 

(4 

FIG. 10. Isothermal contours at various cycles of oscillation (A, = 0.5). (a) Beginning of cycle; (b) after 
l/4 cycle ; (c) after l/2 cycle ; (d) after 3/4 cycle ; (e) after one cycle. 
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